PC用は別頁→ 印刷用PDF版は別頁

■番号札のもらい方《解説》
【例1】
 「同質の赤玉3個,青玉2個を一列に並べる方法は何通りあるか」という問題を組合せで考えてみます.

 次の図で青線よりも上のような並べ方は,「並べた玉を動かす」という考え方以外に,「受付で番号札をもらう」という考え方でもできます.
 赤組は玉を3個並べるので,受付で番号札を3枚もらいます.青組は番号札を2枚もらいます.番号札には,座席が書かれていて,1番の番号札をもらえば1番のところに並べる,2番の番号札をもらえば2番のところに並べる・・・というように決めます.

 青線よりも下の図は,赤組が1,3,4の番号札,青組が2,5の番号札をもらったようすを表しています.このとき,玉の並べ方はちょうど上の図と一致します.


 結局,同質の赤球3個,青玉2個を一列に並べる方法は,1から5までの番号札のうち赤が行き先の番号札3枚をもらえば決まります.(青の行き先は残り2か所で,これは赤が決まれば自動的に決まります.)
 だから53=10通りです.・・・(答)


 青の行き先を先に決めても同じことになります:1から5までの番号札から青の行き先の番号札2枚をもらう方法は
=10通りです.
(このとき赤の行き先は,残りの3か所です.) このように,「並べ方の問題」なのに「組合せ」で解けるのは,番号札の組合せが並べ方を表しているからです.
【例2】
 同質の赤球3個,青玉2個,黒玉2個を一列に並べる方法は何通りありますか.

 上の図は,1から7までの番号札のうち,赤組が5,3,4を,青組が2,6を,黒組が7,1をもらったようすを表しています.このときの並べ方は,下の図のようになります.
●●●


 このように考えると,問題の並べ方は,1から7の7枚の番号札のうち,赤の行き先を3枚、残りから青の行き先を2枚,(その残りは黒の行き先)というように番号札をもらう方法に等しいので,
734222=210通り・・・(答)
22は1です.書いても書かなくてもよろしい.)
【例3】
 10円硬貨を6回投げるとき,表が3回出るのは何通りありますか.

で1通り,
で1通り,
で1通り,
で1通り,
・・・・・・・・
・・・・・・・・
で1通り,
のように数えます.

 一番上の図は,1から6の番号札のうち表組が1,2,3の3枚の番号札をもらった場合を表しています.
・・・・・・・
 一番下の図は,表組が4,5,6の3枚の番号札をもらった場合を表しています.


1から6までの6枚の番号札のうち,表の行き先の番号札3枚をもらう方法(表の行き先を決めたら,残りは自動的に裏に決まる)は
63=20通り・・・(答)

【例4】
 右図のような街路があるとき,A地点からB地点へ最短経路で行く方法は何通りありますか.


 同じものがあるときの順列で考える方法もありますが,組合せでは次のように考えることができます.

 右の図で,北へ進むことをnで,東へ進むことをeで表すと,青色の順路はnneenee,茶色の順路はeneenenとなります.

 どの順路もnが3個,eが4個あります.青色の順路はnが1,2,5の番号札をもらった場合に対応します.茶色の順路は,nが2,5,7の番号札をもらった場合に対応します.
 このように,1から7番のうちでnの現れる番号を3枚もらえば順路が決まります.
 73=35通り・・・(答)



《問題》
≪1≫
 aが4個,bが3個あるとき,これらを並べ替えてできる順列の総数を求めなさい.


≪2≫
 白玉2個,赤玉3個,青玉1個を一列に並べる方法は何通りありますか.


≪3≫
 10円硬貨を10回投げるとき,表が4回出る場合は何通りありますか.


≪4≫
 5枚の硬貨を投げるとき,2枚以上表が出る場合は何通りありますか.




≪5≫
 右図のような街路があるとき,A地点からB地点へ行く最短経路は何通りありますか.


≪6≫
 赤玉4個,白玉3個を白玉同士が隣り合わないように一列に並べる方法は何通りありますか.


≪7≫
 赤玉4個,白玉3個,青玉2個の合計9個の玉を一列に並べるとき,青玉が隣り合う並べ方は何通りありますか.


≪8≫
 a,a,a,b,b,cの6文字のカードを机の上に円形に並べる方法は何通りありますか.



■[個別の頁からの質問に対する回答][番号札のもらい方について/18.10.2]
組み合わせの番号札のもらい方《6》で、赤玉の並べる方法を考慮して5!をかけないのですか? 根本的に私が間違ってしまっていたらすみません。 お時間あるときに解説よろしくお願いします
=>[作者]:連絡ありがとう.このページで「赤玉4個,白玉3個」というとき,各々同質で区別ができないものを扱っています.つまり,この問題は同じものがあるときの順列の総数の問題です.
○あなたの弱点⇒とにかく計算しようとしていますが,その計算のもとになっている根拠を確かめていません.
○順列,組合せの問題で「考え方」が正しいかどうかを確かめるには⇒数字を少なくし,単純化して具体例で調べるとよい.
例えば「赤玉2個,白玉2個を1列に並べるとき,白玉が隣り合わない(赤玉は隣り合ってもよい)並べ方は?」
[正しい考え方]
赤玉を並べておき,その両側を含む3つの隙間に白玉を並べる:
(1)(2)(3)
の3個の番号札の内で,白の入る座席の番号を2つとってくる方法は 3C2=3…(答)
(実際,〇,〇〇,〇の3通りが答えになる)
[あなたの間違った考え方]
(1)(2)(3)
(1)(3)(2)
(2)(1)(3)
(2)(3)(1)
(3)(1)(2)
(3)(2)(1)
のように,白玉を区別して並べかえている.それも白が3個あるとしている.
■[個別の頁からの質問に対する回答][番号札のもらい方について/17.6.28]
今日、初めてこのサイトを使いましたがとても気に入りました。 さくさくゲーム感覚で問題を解いていけるのはとても楽しいです。 希望としてはチャレンジ問題のような発展問題が最後に1問ほどあると良かったと思います。
=>[作者]:連絡ありがとう.サブメニューの章末問題などをやってみるとよいでしょう.
少しだけ難しい問題が作れればよいのですが,さじ加減を少しでも間違うと予期しない展開になることがあり,その頁で扱った方がよいかどうか判断が難しい場合が多いです.・・・たとえば,きまじめで努力型の人の場合,99問正しくて,1問だけ間違った場合に,その1問のミスのために気分が真っ暗になってしまうことがあるようです.99%楽しいことがあったのに,たった1%の暗い出来事で頭が一杯になってしまうということです.さじ加減が効き過ぎた場合,解答を見てもなぜそれが解答なのかもわからないことになり,何度も質問が来て対応しきれないといった展開になることもあります.
これとは逆に,100万人に1人だけが宝くじに当たるような話,すなわち真っ暗な暗闇の中で,たった1つの星の明かりだけでも救われたと感じる人もいます.
人それぞれですので,悲観的な人でも楽観的な人でも無難にこなせるようにしようとは考えていますが.

(携帯版)...メニューに戻る

...(PC版)メニューに戻る