この頁では,漸化式で与えられた数列の極限について,次の3つの場合について学習します.
(I)一般項を求めることができ,求めた一般項から極限が求められる場合
(II)一般項を求めることはできないが,極限値の必要条件を絞り込むことができ,その極限値に収束することが証明できる場合
(III)別の数列の極限との関係から問題の数列の極限が求まる場合
右上に続く↑
|
(I)の解説 *** 一般項を求めることができ,求めた一般項から極限が求められる場合
【例題 1.1】
次の条件によって定められる数列 {an} の極限を求めてください.
2項間漸化式
(解答)2項間の分数形の漸化式 3項間漸化式 については,一般項が求まる場合があります.このような場合には,一般項から極限を求めることができます. と変形すると,数列 ゆえに ※ 漸化式 に対して 特性方程式と言います.特性方程式の解(不動点) と変形できます.(特性方程式については,この頁の下端に解説があります.) なお,答案作成上は特性方程式にも不動点にも触れずに,上記の答案のように(なぜその変形を思いつくのかという理由を示さなくても,偶然思いついたかのようなふりをしながら)
「特性方程式」はうまく使えばきれいに決まりますが,教科書には登場しません.「使える場面と使えない場面の違い」「αの意味」など自信が持てないときは次のような答案も可能です.
(別解)
もしそのような定数αが存在したら,
(存在しなければ,別の方法を試みるという腹つもりで) となる定数 の係数を比較すると そこで, 数列 ゆえに |
■■問題 1.1■■ 次の漸化式で定まる数列の極限を求めてください. (暗算では無理です.各自で計算用紙で求めてから,下の選択肢のうちで正しいものをクリック)
(1)
と変形すると,数列 ゆえに |
(2)
と変形すると,数列 ゆえに |
(I)の解説(続き)*** 一般項を求めることができ,求めた一般項から極限が求められる場合…3項間漸化式
【例題 1.2】
(解答)次の条件によって定められる数列 {an} の極限を求めてください. となる定数 だから, の解になる. ![]() または ![]() |
(A)より, 数列 (B)より, 数列 (D)−(C)より ゆえに |
■■問題 1.2■■ 次の漸化式で定まる数列の極限を求めてください. (暗算では無理です.各自で計算用紙で求めてから,下の選択肢のうちで正しいものをクリック)
(1)
となる定数 係数を比較すると の解になる. ![]() または ![]() (A)より, 数列 (B)より, 数列 (C)−(D)より ゆえに |
(2)
となる定数 係数を比較すると の解になる. ![]() または ![]() (A)より, 数列 (B)より, 数列 (D)−(C)より ゆえに →(この頁の先頭へ戻る) |
■■問題 2■■ 次の漸化式で定まる数列の極限を求めてください. (暗算では無理です.各自で計算用紙で求めてから,下の選択肢のうちで正しいものをクリック)
(1)
極限値を
両辺を2乗すると (A)により 次に, 問題の式の両辺から3を引くと ここで だから したがって 以上により |
(2)
極限値を
(A)により したがって, 次に, 問題の式の両辺から1を引くと ここで したがって 以上により ※この問題では数列の一般項を求めることもできるが,極限値だけが必要な場合は,上記のように一般項を求めずに極限値を求めることができる. →(この頁の先頭へ戻る) |
■■問題 3■■ 各々指定された極限を求めてください (暗算では無理です.各自で計算用紙で求めてから,下の選択肢のうちで正しいものをクリック)
(1)
とおくと, 仮定により だから
(2)
とおくと, 仮定により だから このとき |
(3)
i)
i)
とおくと, だから
ii)
ii)
だから |
■■注意■■ (失敗例1) 定期テストを一夜漬けで間に合わせた高校生が,次のような答案を書くことがありますが,部分点は2,3割しかありません. これは,極限値が 極限値が存在することを何らかの方法で示さなければダメです. ![]() のとき から と答えている場合 右図のようにanは常に正の値をとり,無限大に発散します(an→∞). だから,an→−1ということはありません. この
何らかの事情でan=αの値に,はまり込んでしまったら,an+1以降の値も次々にその値にはまり込んでしまって抜け出せなくなる値(不動点:ブラックホールのようなもの)
を表しています.<特性方程式の解が不動点> 実際,右図で中塗りになった赤丸(のx座標)が不動点になっており, ところが,元の問題ではa1=1なので,結局一度もこの値になることはなく, だから,αが凹レンズの焦点の位置にあって,そこから発散していくことになります. |
(失敗例3) のとき から と答えている場合 特性方程式は「定数係数」の漸化式にしか使えないので,変数nが係数になっているような漸化式には使えないと考えた方がよい. 実際,上記の漸化式の一般項は (失敗例4) 3項間漸化式 ではありません. です.【例題 1.2】の解説に書いてあります. |
■[個別の頁からの質問に対する回答][数列の漸化式と極限について/17.4.23]
問題1.2(1)解説下から5行目(D)-(C)は(C)-(D)と思われる
■[個別の頁からの質問に対する回答][数列の漸化式と極限について/16.11.27]
=>[作者]:連絡ありがとう.訂正しました. 問題1.1(2)解説の特性方程式で求めた値が違うと思われる
=>[作者]:連絡ありがとう.解説の途中経過で符号が逆になっていましたので訂正しました.結果は変更なしです. |