→ 携帯版は別頁
== ベクトルのなす角 ==

【要約】
2つのベクトルの成分がのように与えられているとき,内積の定義

において,


のように求めることができるから,これらを使って
…(1)
のように角θの余弦を計算することができる.

○さらに,次の角度については筆算の場合でも,cos θの値から角θが求まる.
0
1 0 −1
○通常の場合,これ以外の角度については,コンピュータや三角関数表によらなければ角θの値は求められない.
【例】
と計算できれば(またはθ=60°)と答えることができる.
この角度は「結果を覚えているから答えられる」のであって,次の例のように結果を覚えていない角度については,このようには答えられない.
【例】
となった場合,高校では逆三角関数を扱わないのでθ=...の形にはできない.
そもそも,ベクトルの成分と角θをつなぐ公式(1)は

ではなく

の形をしており,cos θの値までしか求まらない.
このような問題では,必要に応じて「θとなる角」などと文章で答えます.

【例題1】
のとき2つのベクトルのなす角θを求めなさい。(度で答えよ)
(答案)



だから

θ=60° …(答)
【例題2】
のとき2つのベクトルのなす角θを求めなさい。(度で答えよ)
(答案)



だから

θ=45° …(答)

【例題3】
のとき,2つのベクトルのなす角をθとするとき,の値を求めなさい.
(答案)



だから
…(答)

【問題】
(1) 2つのベクトルのなす角を求めてください.(答は度で)
30° 45° 60° 90° 120°
(2) 2つのベクトルのなす角を求めてください.(答は度で)
30° 45° 60° 90° 120°

(3) 2つのベクトルのなす角を求めてください.(答は度で)
45° 60° 90° 120° 135° 150°
(4) 2つのベクトルのなす角を求めてください.(答は度で)
45° 60° 90° 120° 135° 150°

(5) 2つのベクトルのなす角をθとするとき,cosθの値を求めてください.

【ベクトルの垂直条件】…(直交条件)
のとき,

※垂直(直角,90°)は1つの角度に過ぎませんが,実際に出会う問題は垂直条件(直交条件)を求めるものの方が多いので,この公式は重要
(解説)

(参考)
大学では,内積が0になる場合はの場合も含めて,「垂直」「直交」と定義しますが,
高校では零ベクトルの向きは考えないことになっていますので,「2つのベクトルが垂直である」というためには

だけでなく

も示すことになっています.
ただし,として(0 , 0)以外の定数の成分が与えられているとき,それが零ベクトルでないことは自明ですので,「」の断り書きは省略できます.
【例題4】
のときが垂直となるように定数tの値を定めなさい.
(答案)
よりt=−2…(答)
【問題】
(1) 2つのベクトルが直交するように定数xの値を定めてください.
−6 −3 −2 2 3 6
(2) 2つのベクトルについて,が直交するように定数xの値を定めてください.
−1 −2 −3 ±1 ±2 ±3
←メニューに戻る