→ 携帯用は別頁

== 2次関数の頂点(展開形) ==

≪要点≫

【例1】
次の2次関数の頂点の座標を求めてください.
y=2x2+8x+9
(解答)
x2の係数2でくくる.その際,定数項9は入れない方がよい.
(←最後はかっこの外に出すので,はじめから入れない方がよい.出したり入れたりすると2度手間になり,計算間違いも多くなる.)
y=2(x2+4x)+9

かっこの中で(x+p)2の形を作る.
定数項の分は,はじめに足した分だけ引いておく.
y=2(x2+4x+4−4)+9

=2{(x+2)2−4}+9

外側の{ }を外す.
=2(x+2)2−8+9
#よくある間違い#
先頭の係数を掛けるのを忘れてしまう!!
××2(x+2)2−4+9
=2(x+2)2+1
頂点の座標は(−2, 1)…(答)
【例2】
次の2次関数の頂点の座標を求めてください.
y=3x2−6x+1
(解答)
x2の係数3でくくる.
y=3(x2−2x)+1

かっこの中で(x−p)2の形を作る.
y=3(x2−2x+1−1)+1
=3{(x−1)2−1}+1

外側の{ }を外す
=3(x−1)2−3+1
#よくある間違い#
先頭の係数を掛けるのを忘れてしまう!!
××3(x−1)2−1+1
=3(x−1)2−2
頂点の座標は(1, −2)…(答)
【例3】
次の2次関数の頂点の座標を求めてください.
(1) 3でくくったら,3で割った係数になる

(2) でくくったら,で割った係数になる
⇒3を掛けた係数になる

※展開して元に戻してみると,これが正しいことが分かる
(解答)


頂点の座標は (3, 3)…(答)

【問題】
 次の図は2次関数のグラフです.このグラフを平行移動して のグラフを描くとき,赤丸で示した頂点をどこに移動したらよいか.
 新しい頂点の場所をクリックして示してください.(暗算では無理です.別途,計算用紙で計算してから答えてください)
採点結果の表示 ⇒ 正解:,不正解:
[第1問 / 全20問]

...メニューに戻る
■[個別の頁からの質問に対する回答][2次関数の頂点について/17.8.13]
解答を求める際に、頂点の向き(∔.-)も併せて解答させてはどうでしょうか。
=>[作者]:連絡ありがとう.一度に2つのことをさせると,採点の仕方を具体化するときに複雑になります・・・頂点が正しくて凹凸が違う場合,凹凸が正しくて頂点が違う場合,頂点も凹凸も違う場合,・・・その情報を回答者に返しても複雑過ぎてうれしくない可能性が大です.