→ 携帯版は別頁

== 媒介変数表示で表された関数の導関数 ==
【要点】
x=f(t),y=g(t) のようにx,yが媒介変数表示されているとき
 です。
x,yを「別々に微分して割る」
「結果は媒介変数表示のままでよい」
(解説)
yxで微分したものは,分母が0でない分数
極限値で定義されます.
 ここで,通常の分数の段階では,分母と分子のそれぞれをで割るという変形は自由に行うことができますので

という変形は問題なく行えます.
 次に,のときに,となる場合については,



となるので,の定義にあてはめると

が成り立ちます.(高校2年では微分記号でで割ったり掛けたり約分したりするのは「要注意」と教えますが,この公式は結果的に分母と分子をで割ったものになるということです.)
例1
x=t2+1,y=t3−1のとき,yxで微分してください.
※導関数は,媒介変数 t の表示のままでよい。
例2
x=t−sint ,y=1−cost(サイクロイド)についてを求めてください.
dx/dt = 1−cost, dy/dt = sintだから

例3
x=a cos3t,y=a sin3t (アステロイド)についてを求めてください.
dx/dt = 3a cos2t (−sint),dy/dt = 3a sin2t costだから


[問題] 次の関数についてを求めてください. (解答は下の選択肢から選んでください.なお,計算用紙を使って十分検討してから答えてください.)
(1)
x=t2−t+4
y=t2+3t+1





(2)







(3)







(4)







(5)







●===メニューに戻る
■[個別の頁からの質問に対する回答][媒介変数表示で表された関数の導関数について/17.2.15]
微分積分法の復習に大変お世話になっております。 媒介変数表示の微分[問題](5)ですが、与式のうちy=a(cost-tsint)が、回答解説と違っているようです。 解説内のy'から察するに正しい式は x=a(cost+tsint) y=a(sint-tcost) ではないでしょうか。 更新をお休みになっておられたら恐縮です。 ご確認いただけたら幸いです。
=>[作者]:連絡ありがとう.問題文の方がタイプミスでしたので訂正しました.