■マクローリン展開携帯版
【マクローリン展開】
 関数f(x)x=0の近傍でn回微分可能であれば
f(x)=f(0)+x+x2+···+xn−1+···
が成り立つ.
 この定理をマクローリンの定理といい,右辺の展開式をマクローリン展開という.(これは,テイラーの定理,テイラー展開をx=0の近傍に適用したものとなっている.)
※具体的に与えられた関数について,マクローリン展開を求めるには,順次微分してf’(x), f”(x), ..., f(n)(x)を求め,x=0を代入して係数を求めていけばよいのであるが,
技術士第一次試験問題に出題される問題では,次の重要な関数のマクローリン展開を覚えておいて,その結果から出発した方が簡単であることが多い.

【重要な関数のマクローリン展開】 ←(次の4個を覚える!)
ex=1+x+x2+···+xn−1+···
log(1+x)=x−+−···+(−1)n+1+···
sinx=x−+−···
cosx=1−+−···

〜マクローリン展開は何の役に立つのか?〜
[例1] xとして十分小さな値,例えばx=0.1を考えると,次数の高い項はx2=0.01 , x3=0.001 ,x4=0.0001 ,...のように急速に0に近づくことが分かる.
 そこで,誤差の範囲が1000分の1ミリ(0.000001m)以下を要求されるような精密作業でも,マクローリン展開の第6項まで使えば十分求められることになる.sinx , cosxのように足したり引いたりするものもあるので,実際には慎重に扱わなければならないが,大雑把にいえばmm単位まで合わせばよいのなら,マクローリン展開の第3項まで使えば十分よい近似になる.
 こうして,複雑な関数でもマクローリン展開を使うと十分実用に耐えうる数値に直せる.

[例2] Aが正方行列であるときは,その定数倍,和差,累乗Anも定義できる.そこで
eA=1+A+A2+···+An−1+···と定義すること

により,行列の指数関数が定義できることになる.収束するという一定の制限は必要であるが,Aが無限次元の正方行列であってもこの関係を考えることができる.このように,和差,定数倍が定義できる量については,マクローリン級数を定義式として指数関数,対数関数,三角関数が自由に扱えるようになる.

※正しい番号をクリックしてください.
平成16年度技術士第一次試験問題[共通問題]
【数学】V-7

 関数y=xexをマクローリン展開するとき,その展開式の
xn (n≧1)の係数は次のどれか.ただし,eは自然対数の底とする.
1(n−1)! 2n! 3 4 51

○この頁に登場する【問題】は,公益社団法人日本技術士会のホームページに掲載されている「技術士第一次試験過去問題 共通科目A 数学」の引用です.(=公表された著作物の引用)

○【解説】は個人の試案ですが,Web教材化にあたって「問題の転記ミス」「考え方の間違い」「プログラムの作動ミス」などが含まれる場合があり得ます.
 問題や解説についての質問等は,原著作者を煩わせることなく,当Web教材の作成者(<浅尾>)に対して行ってください.
平成17年度技術士第一次試験問題[共通問題]
【数学】V-4

 関数y=log(x+1)2をマクローリン展開するとき,その展開式のx2の係数は次のどれか.ただし,対数は自然対数とする.
1−2 2−1 30 41 52

平成20年度技術士第一次試験問題[共通問題]
【数学】V-6

 関数y=のマクローリン展開は,次のどれか.ただし,
eは自然対数の底である.
1y=1++++···
2y=1+++···
3y=1++++···
4y=1++++···
5y=1+++···

平成21年度技術士第一次試験問題[共通問題]
【数学】V-5

 関数y=e−xのマクローリン展開は,次のどれか.ただし,eは自然対数の底とする.
1y=1+x+++++···
2y=1−x+++···
3y=1+x+++++···
4y=1−x+++···
5y=−1+x−++−···

平成24年度技術士第一次試験問題[共通問題]
【数学】V-5

 関数y=log(1+x)をマクローリン展開したとき,その展開式のx4の係数は次のどれか.ただし,対数は自然対数とする.
1y=− 2y=− 3y=1
4y= 5y=

○===メニューに戻る ..高卒数学基礎のメニューに戻る