← PC用は別頁

== 根号計算(式の値)の入試問題 ==

〇このページでは,高校入試問題としてよく出る根号計算のうち,次の例題のような形で式の値を求める問題を扱います.
【例題1】
のとき,の値を求めなさい。求め方も書くこと。
(山形県2017年入試問題)
 このくらいの問題では,力任せに単純計算主義で押し通していっても,一応できますが,与えられた式と求めるべき式の関係を利用して解くのがよい解き方です.
 見通しがよく,点検しやすい答案にすると,もっと複雑な問題を解くときでも,間違いが少なくなると考えるとよいでしょう.
(解答)
与えられた条件から


になるから

…(答)
【要点1】
与えられた条件式が

とか

などの形をしているときは,問題を解く前に,あらかじめ

などの簡単で使えそうな式を作っておき,求めたい式をそれらで表す.

※以下に引用する高校入試問題で,元の問題は記述式の問題ですが,web画面上で入力問題にすると操作性が悪いので,選択問題に書き換えています.
【問題1】 (画面上で解答するには,選択肢の中から正しいものを1つクリック)
(1)
のときの,式の値を求めなさい。
(岐阜県2017年入試問題)

(2)
のとき,の値を求めよ。
(奈良県2017年入試問題)
(3)
のとき,の値を求めよ。
(京都府2015年入試問題)
(4)
のとき,
の値を求めよ。
(東京都2017年入試問題)

【例題2】
のとき,の値を求めなさい。
(茨城県2017年入試問題)
 このくらいの問題では,力任せに単純計算主義で押し通していっても,一応できますが,与えられた式と求めるべき式の関係を利用して解くのがよい解き方です.
 見通しがよく,点検しやすい答案にすると,もっと複雑な問題を解くときでも,間違いが少なくなると考えるとよいでしょう.
(準備)
[2次方程式から解を求めるには]
≪1≫
2次方程式を解の公式を使って解くと


【解の公式】
のとき

の解は

つまり
2次方程式::解
≪2≫
 上記のように,2次方程式から解を求める変形は,教科書などで何度も練習しますが,解が分かっているときに元の2次方程式を作るにはどうしたらよいか?
【間違ってはいけないこと】
たとえば,1つの解がのとき,このまま両辺を2乗しても,きれいな形にはなりません.


となって,根号が残ります.
【次のようにやるとできます】
の形にするには,「右辺に根号が1つだけある形」でなければなりません.すなわち

の両辺を2乗すると


…できあがり!
(例題2の解答)
だから,両辺をそれぞれ2乗すると

…(答)
(参考)
単純計算主義で押し通した場合は,次のような答案になるでしょう.(間違いにはならない)

…(答)
【要点2】
右辺を根号だけにしてから2乗する.

※元の問題は記述式の問題ですが,web画面上で入力問題にすると操作性が悪いので,選択問題に書き換えています.
【問題2】
(1)
のとき,の値を求めなさい。
(埼玉県2015年入試問題)

(2)
のとき,の値を求めなさい。
(神奈川県2015年入試問題)

(3)
のとき,の値を求めよ。
(愛知県A 2000年入試問題)

(4)
のとき,の値を求めよ。
(西大和学園2017年入試問題)

...(携帯版)メニューに戻る

...メニューに戻る