■オイラーの分数式,繁分数式
≪この頁に登場する問題・解答一覧≫ 次の分数式を簡単にしてください.
|
|
(途中経過) 通分の練習として,次のような変形が考えられます. (1)← (原式) (原式) (原式) (分子) (原式) (原式) (分子) { }内 (分子) (原式) (原式) (分子) (原式) 普通に通分して示すこともできますが,(1)(2)の結果を使うと簡単になります. (6)← (7)← (8)← ゆえに |
【問題1】 次の分数式を簡単にしてください. |
[1] |
−3−2−10123−a−b−ca+b+c |
[2] |
−3−2−10123−a−b−ca+b+c |
[3] |
−3−2−10123−a−b−ca+b+c |
次の繁分数式を簡単にしてください.(繁分数式とは,分数式の分母や分子がさらに分数式となっているもののこと)
|
(途中経過) 繁分数式を簡単にするには,分数の分母や分子が分数になっている部分に目を付けて,「分母」と「分子」に同じ式を掛けるのが基本です. (1)← もっとはっきり言えば,その分母 分数式の一部分にだけ何かを掛けると式の値が変わってしまうため,通常は一部分にだけ何かを掛けるようなことはできませんが,分数式の「分母と分子に同じ式を掛ける」ことはできます.これは,通分や約分のときに使われる正しい変形方法です. (2)← において枠線で示した部分は,(1)の結果から
(2)の結果から,
(はじめから計算する場合は)
(4)←(3)の結果から,
(はじめから計算する場合は)
(5)←(6)← (7)← (8)← (7)の結果から (9)← (10)← (11)← (12)← があります.そこで両方とも取り除くために, (13)← そのまま気長に変形してもできますが,この式は(12)の問題において (12)結果に
(12)の結果と同じで何も変わっていないので変に思えますが,実は(12)の結果は
(14)← |
(話題)・・・以下の文章を読んで,「AHA!体験,目の保養」となるか,「目の毒,混乱の元」となるかはあなた次第です. ○ある問題を解くときに,解き方が1通りしかないような問題はあまり上等の問題とはいえない.例えば,分数の計算は通分でしかできない訳ではない.次の式のように多数の分数の和となっている場合には,「通分」で行うと分子が煩雑になり過ぎるのに対して,「部分分数分解」では簡単になることがある. ○このように,分数(式)の計算には「通分」をする方法と「部分分数分解」をする方法があるので,頁の先頭にある(1)の問題を部分分数分解で解くことも考えられる. となるから ○繁分数式の問題では「順に部品を外して最後に建物を解体する」という進め方が基本ですが,慣れてきたら「1つの区画を丸ごと解体する」「ユニットバスをそのまま移動する」という方法もありえます.これらは,「部分から全体へ」に対して「全体から部分へ」という見方にたとえることができます. 繁分数式の(4)の問題で,大きい方から解体してみると
目の保養になって,複眼的に見られるようになりましたか?
逆に,この話が「目の毒になる場合」とは,基本が身についていないのに先に応用に手を付けてしまって,両方とも分からなくなる場合です.
昔(50年以上も前の話),数学が全然できない中学生が,かっこを「外からはずす方法」と「中からはずす方法」が混乱してしまって,両方ともできなくなって,先生にペンペンに叱られたことがあった.
これと同様で,むずかしいなと思う場合は,基本だけに絞って確実にできるようにする方がよいでしょう.
基本は中から:{2(x+1)−(x−1)}+3{(x+1)−2(x−1)}={2x+2−x+1}+3{x+1−2x+2} ={x+3}+3{−x+3}=x+3−3x+9=−2x+12 外からはずせば:{2(x+1)−(x−1)}+3{(x+1)−2(x−1)}=2(x+1)−(x−1)+3(x+1)−6(x−1) =5(x+1)−7(x−1)=5x+5−7x+7=−2x+12 |