→ 携帯用は別頁
== 資料の整理 ==

この頁では,次の項目について,解説と練習問題があります.次の表は直接ジャンプできるメニューになっています.



度数分布表,ヒストグラム

度数分布表
階級度数(人)
点以上〜点以下
1 〜 201
21 〜 407
41 〜 6011
61 〜 805
81 〜 1001
合計25
〇実験や観測によって得られた生の資料を,区間に区切って表にまとめたものを度数分布表といいます.
例えば、1クラス25人のテストの得点が
22, 53, 17, 72, 25, 91, … (以下25人分の得点)
であったとき,この生の資料を整理した右のような表が度数分布表です.
 度数分布表を右図のような柱状グラフに表したものをヒストグラムといいます.
ヒストグラフではなくヒストグラムという.英語で histogram と書くものをカタカナで書くとそうなります.
他に…グラムという名前になっているものの例:列車運行表をグラフに表したものは,ダイヤグラムと呼ばれる.
最近よく聞くインスタグラム
(Instagram)は固有名詞だが,若者にはこちらの方が親しめるかもしれません
(注)
 ヒストグラムとは,棒グラフのことじゃないか?と考えると少し違います.
 棒グラフは,「何らかの分類」に従って度数やパーセントを縦(または横)棒グラフにしたものなので,1つの区分と隣の区分の間には隙間をあけるのが普通です. これは,右の例で言えばA型からB型は連続しているわけでもなく隣であるわけでもないという事情をよく反映しています.
 このグラフを政党支持率と考えても同様に,AB型よりも少しだけ右寄りになればO型になるという訳ではないという事情と同様です.
 これに対して,ヒストグラムは横の目盛りは「何らかの分類の名前」ではなく「数値」になっていて,「本来つながっているはずの分布を分析担当者の都合で区切って」分類したものです.
 だから,ヒストグラムでは「横方向は,隙間なく繋がっていて,隣というものが決まる数字の区間」でなければなりません.

階級の幅
【例題1】
階級(m)度数(人)
以上  未満
0 〜 51
5 〜 104
10 〜 1515
15 〜 208
20 〜 251
25 〜 303
30 〜 352
35 〜 402
合計36

 右のは,クラスの全生徒36人分のハンドボール投げの記録をまとめた度数分布表である。このとき,次の(1)〜(3)に答えよ。
(1) 階級の幅は何mか。
(2)(3) 略
(長崎県2017年入試問題)
(解答)
(1) この例のように資料を整理したものを度数分布表と言い,それぞれの階級の間隔の大きさを「階級の幅」といいます.
510, 1015, …
となっているとき,5から10までの幅は5だから,階級の幅は5になります.…(答)
(深く考える人へ)
ある階級が5以上10未満(すなわち5≦x<10)だったら,10はその階級に入っていないのではないか,実際には小数点以下第2位(0.01m=1cm)程度までしか測れないから,大きい方の端は9.99までしかないのではないのか?と疑う人へ
以上未満
510
1015
1520

となっているとき,階級の幅は「ある階級の先頭の値」から「次の階級の先頭の値」までの間隔と考えます.だから,この表で赤で示した値の間隔になるので,
5から10までの間隔の5になります.
(よく似た話)
改行幅は,右図のように行の先頭位置から次の行の先頭位置までで測ります.文字サイズではない.

【問題1】
階級(cm)度数(人)
以上〜未満
150〜1602
160〜1709
170〜18012
180〜1904
合計27

 右の表は,クラスの全生徒27人分の身長をまとめた度数分布表である。階級の幅は何cmか。

【問題2】
階級度数(人)
点以上〜点以下
1 〜 201
21 〜 407
41 〜 6011
61 〜 805
81 〜 1001
合計25

 右の表は,クラスの全生徒25人分の数学の得点をまとめた度数分布表である。階級の幅は何点か。


階級値
【例題2】
階級(cm)階級値度数(人)
以上〜未満- -- -
150〜1602
160〜1709
170〜18012
180〜1904
合計- -27
 右の表は,クラスの全生徒27人分の身長をまとめた度数分布表である。階級値の欄(ア〜エ)を埋めなさい。
(解答)
それぞれの階級の中央の値(両端の値を足して2で割った値)を階級値といいます.
上の表で,アは(150+160)÷2=155です.
同様にして,イ,ウ、エは順に165, 175,185になります.

右の表のように,階級幅が奇数になるときは,階級値は小数になりますが平気で使います.
階級(cm)階級値度数(人)
以上〜未満- -- -
150〜155152.52
155〜160157.59
160〜165162.512

【問題3】
階級(kg)階級値度数(人)
以上〜未満- -- -
40〜453
45〜509
50〜5515
55〜608
合計- -35
 右の表は,クラスの全生徒35人分の体重をまとめた度数分布表である。アの欄に入る数字を答えなさい。

[代表値 - - - 平均値,中央値,最頻値]
 資料全体の特徴を1つの値で表した数字を代表値といいます.
 代表値には「平均値」「中央値」「最頻値」「範囲」などがあります.
 「真理は1つだけでなければならない」などと決めつけてはいけません.どの代表値も長所短所があり,各自が資料を使って分析したいときに,ねらいを実現するために一番適した代表値を選んで使うようにします.
 範囲は資料の「散らばり具合」を表します.
平均値
(1) 「平均値」とは,資料の値の合計を度数の合計で割ったものをいいます.
【例】4個の数値
2, 3, 4, 5
の平均値は(2+3+4+5)÷4=3.5です.
階級階級値度数
以上〜未満- -- -
0〜52.51
5〜107.53
10〜1512.54
15〜2017.52
合計- -10
〇生の資料がなくて,度数分布表だけがあるときは,それぞれの階級値に対応する度数だけ資料があるものと「みなして」平均値を求めます.

左の表では,
2.5の資料が1個,小計2.5
7.5の資料が3個,小計22.5
12.5の資料が4個,小計50.0
17.5の資料が2個,小計35.0
資料の個数の合計10個,資料の値の合計110だから,平均値は110÷10=11.0となります.
このように,度数分布表から平均値を求めるときは,(階級値)×(度数)の計算を繰り返し行うので,次の表のように(階級値)×(度数)の欄を付け足して,横に掛け算をしてから,縦に足すのが普通です.
階級階級値度数階級値×度数
以上〜未満- -- -- -
0〜52.512.5
5〜107.5322.5
10〜1512.5450.0
15〜2017.5235.0
合計- -10110

※以下に引用している入試問題では,元の問題は記述式問題ですが,web上での読者の操作性をよくするために,このサイトでは,独自に選択問題にしています.選択肢の中から正しいものを1つクリックしてください.問題や選択肢に疑問があるときは,原著作者を煩わすことなく,このサイトの管理人に質問してください.
【問題4】
 下の表は,あるクラスの生徒30人が1か月に読んだ本の冊数をまとめたものである。
 このとき,このクラスの生徒が1か月に読んだ本の冊数の平均値を求めなさい.
冊数(冊)1234567合計
度数(人)358382130
(愛知県2017年入試問題)
【問題5】
得点人数
20点3
17点以上20点未満2
14点以上17点未満5
11点以上14点未満4
8点以上11点未満2
0点以上8点未満4
20
 20人の生徒に,20点満点の漢字の書き取りテストを行い,その結果を右の表にまとめた。ただし,得点はすべて整数の値であった。この表から考えられる平均点の最も大きな場合の値と最も小さな場合の値の差は 点である。

(岡山県立朝日高2017年入試問題)

中央値
(2) 資料を大きさの順に並べたとき,中央にある値を「中央値」(または「メジアン」)といいます.
〇一般に,資料の個数が奇数個の場合は,大きい方から数えても小さい方から数えても中央に来る値が1つに決まり,その値が中央値です.
【例】5人の体重(kg)
45.3, 47.1, 51.4, 53.7, 57.6
この例では,中央値は51.4です.
〇資料の個数が偶数個の場合は,「中央に並ぶ2つの値の平均」を中央値とします.
【例】6人の体重(kg)
45.3, 47.1, 51.4, 53.7, 57.6, 58.0
この例では,中央値は(51.4+53.7)÷2=52.55です.
階級度数
以上〜未満- -
0〜51
5〜104
10〜155
15〜203
合計13
〇(中学では発展学習)
生の資料がなくて,度数分布表だけがあるときは,その階級の中に資料が均等に分布しているものとして中央値を求めます.
右の表では,合計13個の中央は小さい方から7番目(大きい方から7番目)の資料だから,10〜15の階級の小さい方から2番目の値と考えます.
階級幅5の間隔に5個の資料が均等に並んでいるとすると,幅1だから,10,11,12,13,14のように並んでいるものと「見なします」.その2番目の値,11が中央値です.

〇各世帯の年収のように,低所得層が圧倒的に多い中に1人だけ高額所得者がいる場合
平均値は「極端値」「はずれ値」の影響を受けて引きずられやすく,例えばある町内の年収の分布が右図のようであるとき(単位100万円),計算上は平均値が336万円となっても,ほとんどの世帯の収入は平均値よりも少なくなります.
これに対して中央値は少ない方からの(または多い方からの)順位なので,高額所得者の年収が1000万円であっても,1億円であってもその金額の影響は受けません.

〇上の例とは逆に,簡単な復習テストのようにほとんどの生徒が満点になり,極端にできない生徒が1人しかいないような場合には,ほとんどの生徒は平均値よりも高い得点になっています.

【問題6】
20 ,40 ,80 ,60 ,80 ,
30 ,60 ,50 ,90 ,20
 右の資料は,中学2年生10人が行った,あるゲームの得点の記録である。この資料について,次の各問に答えなさい。
(1) 略
(2) 10人の記録の中央値を求めなさい。
(三重県2017年入試問題)
【問題7】
階級(kg)度数(人)
以上 未満
14〜18
18〜22
22〜26
26〜30
30〜34
34〜38

1
11
14
16
5
3
50
 右の表は,3年生女子全体50人の握力の記録を,度数分布表にまとめたものである。
 この50人の記録の中央値をふくむ階級について,階級値を答えなさい。

(山口県2017年入試問題)

最頻値
(3) 度数分布表で,度数が最も多い階級の階級値を「最頻値さいひんち」(または「モード」)といいます.
▼度数分布表に整理されていない生の資料,例えば次の例のような資料については最頻値は考えません.
【例】5人の体重(kg)
45.3, 47.1, 51.4, 53.7, 57.6
階級(kg)階級値度数(人)
以上〜未満- -- -
40〜4542.53
45〜5047.59
50〜5552.515
55〜6057.58
合計- -35
〇最頻値は,右のような度数分布表として整理された資料に対して考えます.
右の度数分布表において度数の一番多い値15が最頻値だと言っているのではありません.
度数が一番多い階級の階級値52.5が最頻値です.
- - A表 - -
土産物価格
(円)
階級値個数
以上〜未満- -- -
300〜500400120
500〜700600350
700〜900800200
900〜1100100050
合計- -720
 もう1つ例を示します.
右の表はある土産物店の1日の売り上げを度数分布表に整理したものだとします.
この表から「売れ筋は500円から700円の価格帯,すなわち階級値600円の価格帯」だと言えます.
この土産物店としては,売れ筋の価格帯の商品を増やそうなどと考えるとよい.

- - B表 - -
土産物価格
(円)
階級値個数
以上〜未満- -- -
200〜40030090
400〜600500300
600〜800700300
800〜100090030
合計- -720
〇右の表のように,度数が最大となる階級が1つでないときは,最頻値は1つに決らず,500も700も最頻値になります.
▼土産物店の売り上げを表にした上記のA表とB表を比べてみると,最頻値は階級の区切り方によって変わり,元の生の資料だけで決まる訳ではないと言えます.

最頻値は,度数yの最大値ではない.
yが最大となるxの値:よく売れる価格帯(の階級値)


最頻値は,度数分布表の区切り方によって変わる.



【問題8】
2月の最低気温
階級(°C)度数(日)
以上  未満
−2〜0
0〜2
2〜4
4〜6
6〜8
8〜10

2
6
9
8
2
1
 右の表は,ある年の2月の最低気温を調べて,度数分布表に整理したものである。最低気温の最頻値を求めなさい。

(徳島県2017年入試問題)
2 3 4 9
【問題9】
階級(m)度数(人)
以上  未満
0 〜 51
5 〜 104
10 〜 1515
15 〜 208
20 〜 251
25 〜 303
30 〜 352
35 〜 402
合計36

 右のは,クラスの全生徒36人分のハンドボール投げの記録をまとめた度数分布表である。このとき,次の(1)〜(3)に答えよ。
(2) 最頻値(モード)は何mか。
(1)(3) 略
(長崎県2017年入試問題)

範囲
(4) 資料の中の最大値と最小値の差を「範囲」(レンジ)といいます.
【例】5人の体重(kg)が次の値であるとき
45.3, 47.1, 51.4, 53.7, 57.6
最大値が57.6(kg),最小値が45.3(kg)だから,範囲は57.6−45.3=12.3(kg)になります.

範囲が大きければ,資料は広く散らばっていることになり,範囲が小さければ資料は密に集まっていることになります.このように,範囲によって資料の「散らばり具合」を表すことができます.
 右図において〇が資料を表しているとき,
 AよりもBの方が平均値や中央値は大きい(右側にある)が範囲は同じくらいだと言えます.
 CよりもDの方が範囲が大きい(散らばっている)が平均値や中央値はほぼ同じくらいだと言えます.
例えばこの図において〇がマラソン選手のタイムを表しているとき,Dのような分布になっていると道路の通行規制を長時間行わなければならないことになります.
【問題10】
20 ,40 ,80 ,60 ,80 ,
30 ,60 ,50 ,90 ,20
 右の資料は,中学2年生10人が行った,あるゲームの得点の記録である。この資料について,次の各問に答えなさい。
(1) 10人の記録の範囲を求めなさい。
(2) 略
(三重県2017年入試問題)

相対度数
〇度数分布表において,各階級の度数を度数の合計で割ったものを相対度数といいます.
〇それぞれの階級に度数を対応させた表が度数分布表であるのに対して,それぞれの階級に相対度数を対応させた表を相対度数分布表といいます.
〇相対度数(相対度数分布表)を使うと比率の比較が簡単にできます.
左の度数分布表を相対度数分布表に書き換えると右のような表になります.
度数分布表
階級(点)度数(人)
以上〜以下
1 〜 203
21 〜 4027
41 〜 6047
61 〜 8020
81 〜 1003
合計100
相対度数分布表
階級(点)相対度数
以上〜以下
1 〜 200.03
21 〜 400.27
41 〜 600.47
61 〜 800.20
81 〜 1000.03
合計1

※度数の合計が100だから,それぞれの度数を100で割ると相対度数になる
【例題3】
階級(分)A校B校
度数(人)度数(人)
以上 未満
0〜5
5〜10
10〜15
15〜20
20〜25
25〜30
30〜35
35〜40

4
8
16
20
21
5
4
2

12
25
42
42
39
24
18
8
80210
 右の表は,A校の生徒80人とB校の生徒210人のある日の通学時間を度数分布表にまとめたものである。2校について,通学時間が15分以上20分未満の生徒の割合が大きいのはA校とB校のどちらであるか。そう判断した理由とあわせて書きなさい。
(石川県2017年入試問題)
(解答)
通学時間が15分以上20分未満の生徒の割合は
A校は20÷80=0.25
B校は42÷210=0.2
したがって,A校の方が割合が大きい

【問題11】
階級(cm)度数(人)
以上 未満
210〜240
240〜270
270〜300
300〜330
330〜360
360〜390
390〜420

2
5
8
12
6
5
2
40
 右の表は,ある中学校の2年女子40人の走り幅跳びの記録を度数分布表に整理したものである。
 330cm以上360cm未満の階級の相対度数を求めなさい。
(富山県2017年入試問題)
【問題12】
 右の図は,ある中学校の3年1組の男子20人と3年2組の男子20人のハンドボール投げの記録を,それぞれヒストグラムに表したものである。例えば,3年1組の男子のヒストグラムにおいて,25〜30の階級では,ハンドボール投げの記録が25m以上30m未満の男子が7人いることを表しています。
 3年1組と3年2組の男子の合計40人の記録を,階級が右の図と同じヒストグラムに表したとき,
@ 略
A 中央値が入っている階級の相対度数を求めなさい。

(熊本県2017年入試問題)

■まとめの問題■
【問題13】
図2

 あるクラスの生徒40人に実施したテストの得点をヒストグラムに表すと,図2のようになった。このとき,平均値,中央値(メジアン),最頻値(モード)の大小関係を正しく表したものを,次のア〜エから1つ選んで,その符号を書きなさい。
ア (平均値)<(中央値)<(最頻値)
イ (中央値)<(平均値)<(最頻値)
ウ (最頻値)<(平均値)<(中央値)
エ (最頻値)<(中央値)<(平均値)
(兵庫県2017年入試問題)
【問題14】

 右の図は,あるクラスの生徒20人が冬休み中に読んだ本の冊数を,ヒストグラムに表したものである。この20人が読んだ本の冊数について述べた文として適切なものを,次のア〜エのうちから1つ選び,符号で答えなさい。
ア 分布の範囲(レンジ)は,4冊である.
イ 最頻値さいひんち(モード)は,5冊である。
ウ 中央値(メジアン)は,3冊である.
エ 平均値は,2.3冊である。
(千葉県2017年入試問題)
...メニューに戻る