|
|
|
解説
\( \displaystyle 2ab\div a=\frac{2ab}{a}=2b \)
\( \displaystyle 3ab\div 3a \times b=\frac{3ab\times b}{3a}=b^2 \)
\( \displaystyle 6a^2b\div (-3a) =\frac{6a^2b}{-3a}=-2ab \)
\( \displaystyle 3a^2b\times 2ab=6a^3b^2 \)
\( \displaystyle a^6\div a^2=\frac{a^6}{a^2}=\frac{a\times a \times a \times a \times \cancel{a \times a} }{\cancel{a\times a}}=a^4 \)
\( \displaystyle 24a^2b\div 6ab=\frac{24a^2 b}{6ab}=4a \)
\( \displaystyle (-8a^2b)\div 2ab=\frac{-8a^2b}{2ab}=-4a \)
\( \displaystyle (-a)^5\times a^2\div a^8=\frac{-a^5\times a^2}{a^8} \)
\( \displaystyle =\frac{- \cancel{a\times a \times a \times a \times a} \times \cancel{ a \times a}}{\cancel{a\times a \times a \times a \times a} \times \cancel{a \times a} \times a}=-\frac{1}{a} \)
\( \displaystyle 12a \times (-3b^2) \div 6ab \)
\( \displaystyle =\frac{12a \times (-3b^2)}{6ab}=-6b \)
\( \displaystyle 4ab\times 3a^2\div 2ab=\frac{4ab\times 3b^2}{2ab}=6a^2 \)
→解説を隠す←
|