【円周角の定理】一つの孤に対する「円周角」の大きさは,「中心角」の半分になります. |
《問題》 |
(2)![]()
図の赤で示した弧に対する円周角は等しいから,黄色で示した三角形の1つの角が30°だと分かります.これを使って,b=30°+50°=80°が求まります. (黄色の三角形の内角の和から残りの角を求めて,180°から引いてもよい) |
(3)![]()
円の中心を通る直線で黄色で示した三角形を2つに分けると,それぞれが二等辺三角形になります.(半径が等しいから)そうすると,上端の角が20°+30°=50°になります. 次に,中心角は円周角の2倍だから,c=100° |