■備考■ [1]二重根号ははずれない方が多い 二重根号の問題がそこそこできるようになると「二重根号は,必ずはずせるんだ」と考えるかもしれませんが,それは正しくありません. 生徒が出合う問題は「解ける問題」「はずせる問題」だけで,はずせない問題に触れる機会が少なく,「必ずはずれるんだ」という錯覚を持ってしまうのかもしれません. 説明のために, の形の二重根号で の形の(一重)根号になるかどうか調べてみる. 例えば, 同様にして, の解になっているので,そもそも実数解を条件 すなわち を満たしていなければなりません.以下,この実数条件(2)を満たしているものだけを扱うと,
![]()
○1 これらの整数点は図1のように何本かの直線上に並びます.
黒で示した横線は上の(##)で述べた 青の斜め線は 緑の斜め線は オレンジの斜め線は 一般に,各々の ○2 上の表1において ![]() となる 1) このとき となる. 2) このとき となる. 3) となって *) このように |
次の表で背景色が水色の組は二重根号がはずれ,赤字で示したのはbが平方数になっているもの.
同様にして, のうちで下2個が平方数になっているので,運悪く二重根号がはずれるのは2組だけになります.
最も運がよい場合でも1つの値 すなわち の などとなり, だから,接線の方程式は 次の表で背景色が水色の組は二重根号がはずれ,水色になっているものははずれないもの,赤字で示したのはbが平方数になっているものです.
例えば の二重根号をはずそうとすると,和が6で積が2となる2数を探すことになるので,解と係数の関係から の2つの解 を用いて となります.さらに,この を2次方程式 の2つの解を用いて求めようとすると が登場して,堂々巡りになり,結局はずれません. なども同様にして堂々巡りになり,はずれません. [3]二重根号は,現在高校の教科書では扱われていない 読者のやる気に水を注すような発言で申し訳ないのですが,この頁で取り上げた二重根号をはずす問題は「整数問題の処理」「論理的思考」の訓練にはなりますが,日常生活とのかかわりとなると非常に薄いものです. 社会生活で実際に扱うデータは小数であることも多く,さらには二重根号,三重根号,3乗根,...12乗根など何でもありですが,それらはコンピュータで瞬時に処理できます.この頁で扱った「筆算だけで二重根号をはずす技術」というのは,日常生活ではほとんど出合わないと考えられます.
※このような訳で,二重根号のはずし方という問題は,現在のもしくは近未来の重点項目ではないと考えられますが「読者からの質問が多い」ので教材を置いています. |
■[個別の頁からの質問に対する回答][二重根号について/18.4.30]
「二重根号は,現在高校の教科書では扱われていない」ということに驚きました。また、それにも関わらずこのようにわかりやすく詳しい解説・問題を掲載してくださっていることに感謝します。ぜひ無くなさないでいただきたいです。
=>[作者]:連絡ありがとう.この教材を作ったころ(ゆとりの時代)には,学習指導要領で「二重根号をはずす計算は扱わないものとする」とされ,どんな事情があっても例外は許されないという意味の「〜ものとする」で強く否定されていましたが,2018年現在の教科書では,発展学習として参考程度に触れられていることがあります. |